Arbeitspapier
Randomization inference for difference-in-differences with few treated clusters
Inference using difference-in-differences with clustered data requires care. Previous research has shown that, when there are few treated clusters, t-tests based on cluster-robust variance estimators (CRVEs) severely overreject, and different variants of the wild cluster bootstrap can either overreject or underreject dramatically. We study two randomization inference (RI) procedures. A procedure based on estimated coefficients may be unreliable when clusters are heterogeneous. A procedure based on t-statistics typically performs better (although by no means perfectly) under the null, but at the cost of some power loss. An empirical example demonstrates that alternative procedures can yield dramatically different inferences.
- Sprache
-
Englisch
- Erschienen in
-
Series: Queen’s Economics Department Working Paper ; No. 1355
- Klassifikation
-
Wirtschaft
Hypothesis Testing: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
- Thema
-
CRVE
grouped data
clustered data
panel data
randomization inference
difference-in-differences
wild cluster bootstrap
DiD
- Ereignis
-
Geistige Schöpfung
- (wer)
-
MacKinnon, James G.
Webb, Matthew
- Ereignis
-
Veröffentlichung
- (wer)
-
Queen's University, Department of Economics
- (wo)
-
Kingston (Ontario)
- (wann)
-
2019
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- MacKinnon, James G.
- Webb, Matthew
- Queen's University, Department of Economics
Entstanden
- 2019