Arbeitspapier

Randomization inference for difference-in-differences with few treated clusters

Inference using difference-in-differences with clustered data requires care. Previous research has shown that, when there are few treated clusters, t-tests based on cluster-robust variance estimators (CRVEs) severely overreject, and different variants of the wild cluster bootstrap can either overreject or underreject dramatically. We study two randomization inference (RI) procedures. A procedure based on estimated coefficients may be unreliable when clusters are heterogeneous. A procedure based on t-statistics typically performs better (although by no means perfectly) under the null, but at the cost of some power loss. An empirical example demonstrates that alternative procedures can yield dramatically different inferences.

Sprache
Englisch

Erschienen in
Series: Queen’s Economics Department Working Paper ; No. 1355

Klassifikation
Wirtschaft
Hypothesis Testing: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Thema
CRVE
grouped data
clustered data
panel data
randomization inference
difference-in-differences
wild cluster bootstrap
DiD

Ereignis
Geistige Schöpfung
(wer)
MacKinnon, James G.
Webb, Matthew
Ereignis
Veröffentlichung
(wer)
Queen's University, Department of Economics
(wo)
Kingston (Ontario)
(wann)
2019

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • MacKinnon, James G.
  • Webb, Matthew
  • Queen's University, Department of Economics

Entstanden

  • 2019

Ähnliche Objekte (12)