Arbeitspapier

Wealth and price distribution by difusive approximation in a repeated prediction market

The approximate agents' wealth and price invariant densities of the prediction market model presented in Kets et al.(2014) is derived using the Fokker-Planck equation of the associated continuous-time jump process. We show that the approximation obtained from the evolution of log-wealth difference can be reliably exploited to compute all the quantities of interest in all the acceptable parameter space. When the risk aversion of the trader is high enough, we are able to derive an explicit closed-form solution for the price distribution which is asymptotically correct.

Sprache
Englisch

Erschienen in
Series: LEM Working Paper Series ; No. 2016/13

Klassifikation
Wirtschaft
Mathematical Methods; Programming Models; Mathematical and Simulation Modeling: General
General Equilibrium and Disequilibrium: Financial Markets
Portfolio Choice; Investment Decisions
Asset Pricing; Trading Volume; Bond Interest Rates
Thema
Prediction Markets
Heterogeneous Beliefs
Fractional Kelly Rule
Invariant Distribution
Diffusive Approximation
Fokker Planck Equation

Ereignis
Geistige Schöpfung
(wer)
Bottazzi, Giulio
Giachini, Daniele
Ereignis
Veröffentlichung
(wer)
Scuola Superiore Sant'Anna, Laboratory of Economics and Management (LEM)
(wo)
Pisa
(wann)
2016

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Bottazzi, Giulio
  • Giachini, Daniele
  • Scuola Superiore Sant'Anna, Laboratory of Economics and Management (LEM)

Entstanden

  • 2016

Ähnliche Objekte (12)