Arbeitspapier

Regularized estimation of high-dimensional vector autoregressions with weakly dependent innovations

There has been considerable advance in understanding the properties of sparse regularization procedures in high-dimensional models. In time series context, it is mostly restricted to Gaussian autoregressions or mixing sequences. We study oracle properties of LASSO estimation of weakly sparse vector-autoregressive models with heavy tailed, weakly dependent innovations with virtually no assumption on the conditional heteroskedasticity. In contrast to current literature, our innovation process satisfy an L1 mixingale type condition on the centered conditional covariance matrices. This condition covers L1-NED sequences and strong (ff-) mixing sequences as particular examples. From a modeling perspective, it covers several multivariate-GARCH specifications, such as the BEKK model, and other factor stochastic volatility specifications that were ruled out by assumption in previous studies.

Sprache
Englisch

Erschienen in
Series: Texto para discussão ; No. 680

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Large Data Sets: Modeling and Analysis
Financial Econometrics
Thema
high-dimensional time series
LASSO
VAR
mixing

Ereignis
Geistige Schöpfung
(wer)
Masini, Ricardo P.
Medeiros, Marcelo C.
Mendes, Eduardo F.
Ereignis
Veröffentlichung
(wer)
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Economia
(wo)
Rio de Janeiro
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Masini, Ricardo P.
  • Medeiros, Marcelo C.
  • Mendes, Eduardo F.
  • Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Economia

Entstanden

  • 2020

Ähnliche Objekte (12)