Arbeitspapier

Confidence Intervals in High-Dimensional Regression Based on Regularized Pseudoinverses

In modern data sets, the number of available variables can greatly exceed the number of observations. In this paper we show how valid confidence intervals can be constructed by approximating the inverse covariance matrix by a scaled Moore-Penrose pseudoinverse, and using the lasso to perform a bias correction. In addition, we propose random least squares, a new regularization technique which yields narrower confidence intervals with the same theoretical validity. Random least squares estimates the inverse covariance matrix using multiple low-dimensional random projections of the data. This is shown to be equivalent to a generalized form of ridge regularization. The methods are illustrated in Monte Carlo experiments and an empirical example using quarterly data from the FRED-QD database, where gross domestic product is explained by a large number of macroeconomic and financial indicators.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 17-032/III

Klassifikation
Wirtschaft
Hypothesis Testing: General
Estimation: General
Economic Growth and Aggregate Productivity: General
Thema
high-dimensional regression
confidence intervals
random projection
Moore-Penrose pseudoinverse

Ereignis
Geistige Schöpfung
(wer)
Boot, Tom
Nibbering, Didier
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2017

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Boot, Tom
  • Nibbering, Didier
  • Tinbergen Institute

Entstanden

  • 2017

Ähnliche Objekte (12)