Artikel
Pricing and hedging American-style options with deep learning
In this paper we introduce a deep learning method for pricing and hedging American-style options. It first computes a candidate optimal stopping policy. From there it derives a lower bound for the price. Then it calculates an upper bound, a point estimate and confidence intervals. Finally, it constructs an approximate dynamic hedging strategy. We test the approach on different specifications of a Bermudan max-call option. In all cases it produces highly accurate prices and dynamic hedging strategies with small replication errors.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 13 ; Year: 2020 ; Issue: 7 ; Pages: 1-12 ; Basel: MDPI
- Classification
-
Wirtschaft
- Subject
-
American option
Bermudan option
deep neural network
hedging strategy
lower bound
optimal stopping
upper bound
- Event
-
Geistige Schöpfung
- (who)
-
Becker, Sebastian
Cheridito, Patrick
Jentzen, Arnulf
- Event
-
Veröffentlichung
- (who)
-
MDPI
- (where)
-
Basel
- (when)
-
2020
- DOI
-
doi:10.3390/jrfm13070158
- Handle
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Becker, Sebastian
- Cheridito, Patrick
- Jentzen, Arnulf
- MDPI
Time of origin
- 2020