Artikel

Pricing and hedging American-style options with deep learning

In this paper we introduce a deep learning method for pricing and hedging American-style options. It first computes a candidate optimal stopping policy. From there it derives a lower bound for the price. Then it calculates an upper bound, a point estimate and confidence intervals. Finally, it constructs an approximate dynamic hedging strategy. We test the approach on different specifications of a Bermudan max-call option. In all cases it produces highly accurate prices and dynamic hedging strategies with small replication errors.

Language
Englisch

Bibliographic citation
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 13 ; Year: 2020 ; Issue: 7 ; Pages: 1-12 ; Basel: MDPI

Classification
Wirtschaft
Subject
American option
Bermudan option
deep neural network
hedging strategy
lower bound
optimal stopping
upper bound

Event
Geistige Schöpfung
(who)
Becker, Sebastian
Cheridito, Patrick
Jentzen, Arnulf
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2020

DOI
doi:10.3390/jrfm13070158
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Becker, Sebastian
  • Cheridito, Patrick
  • Jentzen, Arnulf
  • MDPI

Time of origin

  • 2020

Other Objects (12)