Artikel

Sound deposit insurance pricing using a machine learning approach

While the main conceptual issue related to deposit insurances is the moral hazard risk, the main technical issue is inaccurate calibration of the implied volatility. This issue can raise the risk of generating an arbitrage. In this paper, first, we discuss that by imposing the no-moral-hazard risk, the removal of arbitrage is equivalent to removing the static arbitrage. Then, we propose a simple quadratic model to parameterize implied volatility and remove the static arbitrage. The process of removing the static risk is as follows: Using a machine learning approach with a regularized cost function, we update the parameters in such a way that butterfly arbitrage is ruled out and also implementing a calibration method, we make some conditions on the parameters of each time slice to rule out calendar spread arbitrage. Therefore, eliminating the effects of both butterfly and calendar spread arbitrage make the implied volatility surface free of static arbitrage.

Language
Englisch

Bibliographic citation
Journal: Risks ; ISSN: 2227-9091 ; Volume: 7 ; Year: 2019 ; Issue: 2 ; Pages: 1-18 ; Basel: MDPI

Classification
Wirtschaft
Subject
deposit insurance
implied volatility
static arbitrage
parameterization
machine learning
calibration

Event
Geistige Schöpfung
(who)
Assa, Hirbod
Pouralizadeh, Mostafa
Badamchizadeh, Abdolrahim
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2019

DOI
doi:10.3390/risks7020045
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Assa, Hirbod
  • Pouralizadeh, Mostafa
  • Badamchizadeh, Abdolrahim
  • MDPI

Time of origin

  • 2019

Other Objects (12)