Development of a machine learning model for river bed load

Abstract Prediction of bed load sediment transport rates in rivers is a notoriously difficult problem due to inherent variability in river hydraulics and channel morphology. Machine learning (ML) offers a compelling approach to leverage the growing wealth of bed load transport observations towards the development of a data-driven predictive model. We present an artificial neural network (ANN) model for predicting bed load transport rates informed by 8117 measurements from 134 rivers. Inputs to the model were river discharge, flow width, bed slope, and four bed surface sediment sizes. A sensitivity analysis showed that all inputs to the ANN model contributed to a reasonable estimate of bed load flux. At individual sites, the ANN model was able to reproduce observed sediment rating curves with a variety of shapes without site-specific calibration. This ANN model has the potential to be broadly applied to predict bed load fluxes based on discharge and reach properties alone.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Development of a machine learning model for river bed load ; volume:11 ; number:4 ; year:2023 ; pages:681-693 ; extent:13
Earth surface dynamics ; 11, Heft 4 (2023), 681-693 (gesamt 13)

Urheber
Hosseiny, Hossein
Masteller, Claire C.
Dale, Jedidiah E.
Phillips, Colin B.

DOI
10.5194/esurf-11-681-2023
URN
urn:nbn:de:101:1-2023080304324256975712
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:57 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Hosseiny, Hossein
  • Masteller, Claire C.
  • Dale, Jedidiah E.
  • Phillips, Colin B.

Ähnliche Objekte (12)