Arbeitspapier

Publication bias and model uncertainty in measuring the effect of class size on achievement

Class size reduction mandates are frequent and invariably justified by studies reporting positive effects on student achievement. Yet other studies report no effects, and the literature as a whole awaits correction for potential publication bias. Moreover, if identification drives results systematically, the relevance of individual studies will vary. We build a sample of 1,767 estimates collected from 62 studies and for each estimate codify 42 factors reflecting estimation context. We employ recently developed nonlinear techniques for publication bias correction and Bayesian model averaging techniques that address model uncertainty. The results suggest publication bias among studies featured in top five economics journals, but not elsewhere. The implied class size effect is zero for all identification approaches except Tennessee's Student/Teacher Achievement Ratio project. The effect remains zero for disadvantaged students and across subjects, school types, and countries.

Sprache
Englisch

Erschienen in
Series: IES Working Paper ; No. 19/2023

Klassifikation
Wirtschaft
Survey Methods; Sampling Methods
National Government Expenditures and Education
Analysis of Education
Thema
Class size
student learning
meta-analysis
publication bias
Bayesian model averaging

Ereignis
Geistige Schöpfung
(wer)
Opatrny, Matej
Havránek, Tomáš
Havránková, Zuzana
Scasny, Milan
Ereignis
Veröffentlichung
(wer)
Charles University in Prague, Institute of Economic Studies (IES)
(wo)
Prague
(wann)
2023

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Opatrny, Matej
  • Havránek, Tomáš
  • Havránková, Zuzana
  • Scasny, Milan
  • Charles University in Prague, Institute of Economic Studies (IES)

Entstanden

  • 2023

Ähnliche Objekte (12)