Enzymatic synthesis of l‐methionine analogues and application in a methyltransferase catalysed alkylation cascade
Abstract: Chemical modification of small molecules is a key step for the development of pharmaceuticals. S-adenosyl-l-methionine (SAM) analogues are used by methyltransferases (MTs) to transfer alkyl, allyl and benzyl moieties chemo-, stereo- and regioselectively onto nucleophilic substrates, enabling an enzymatic way for specific derivatisation of a wide range of molecules. l-Methionine analogues are required for the synthesis of SAM analogues. Most of these are not commercially available. In nature, O-acetyl-l-homoserine sulfhydrolases (OAHS) catalyse the synthesis of l-methionine from O-acetyl-l-homoserine or l-homocysteine, and methyl mercaptan. Here, we investigated the substrate scope of ScOAHS from Saccharomyces cerevisiae for the production of l-methionine analogues from l-homocysteine and organic thiols. The promiscuous enzyme was used to synthesise nine different l-methionine analogues with modifications on the thioether residue up to a conversion of 75 %. ScOAHS was combined with an established MT dependent three-enzyme alkylation cascade, allowing transfer of in total seven moieties onto two MT substrates. For ethylation, conversion was nearly doubled with the new four-enzyme cascade, indicating a beneficial effect of the in situ production of l-methionine analogues with ScOAHS
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Notes
-
ISSN: 1521-3765
- Event
-
Veröffentlichung
- (where)
-
Freiburg
- (who)
-
Universität
- (when)
-
2023
- Creator
-
Mohr, Michael Karl Felix
Saleem‐Batcha, Raspudin
Cornelissen, Nicolas Vincent
Andexer, Jennifer Nina
- DOI
-
10.1002/chem.202301503
- URN
-
urn:nbn:de:bsz:25-freidok-2371100
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:49 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Mohr, Michael Karl Felix
- Saleem‐Batcha, Raspudin
- Cornelissen, Nicolas Vincent
- Andexer, Jennifer Nina
- Universität
Time of origin
- 2023