Sustainable Thermoelectric Materials Predicted by Machine Learning

Abstract: Using datasets from several sources, a list of more than 450 materials is generated and related them with their thermoelectric properties. This is obtained by generating a set of features using only the molecular formula. Subsequently, a machine learning algorithm classifies the materials in specific, binary classes, for example, possessing high or low Seebeck coefficients or electrical conductivity. After adjusting the threshold values and grouping the materials into clusters, the thermoelectric performance of more than 25k materials is predicted. Finally, the results are filtered to obtain only the sustainable materials, that is, neither toxic nor critical, (ideally) inexpensive, and isotropic with regard to their transport properties to simplify the preparation procedure.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Sustainable Thermoelectric Materials Predicted by Machine Learning ; day:03 ; month:10 ; year:2022 ; extent:8
Advanced theory and simulations ; (03.10.2022) (gesamt 8)

Urheber
Chernyavsky, Dmitry
van den Brink, Jeroen
Park, Gyu‐Hyeon
Nielsch, Kornelius
Thomas, Andy

DOI
10.1002/adts.202200351
URN
urn:nbn:de:101:1-2022100415113633602794
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Chernyavsky, Dmitry
  • van den Brink, Jeroen
  • Park, Gyu‐Hyeon
  • Nielsch, Kornelius
  • Thomas, Andy

Ähnliche Objekte (12)