Directed Evolution of Piperazic Acid Incorporation by a Nonribosomal Peptide Synthetase **

Abstract: Engineering of biosynthetic enzymes is increasingly employed to synthesize structural analogues of antibiotics. Of special interest are nonribosomal peptide synthetases (NRPSs) responsible for the production of important antimicrobial peptides. Here, directed evolution of an adenylation domain of a Pro‐specific NRPS module completely switched substrate specificity to the non‐standard amino acid piperazic acid (Piz) bearing a labile N−N bond. This success was achieved by UPLC‐MS/MS‐based screening of small, rationally designed mutant libraries and can presumably be replicated with a larger number of substrates and NRPS modules. The evolved NRPS produces a Piz‐derived gramicidin S analogue. Thus, we give new impetus to the too‐early dismissed idea that widely accessible low‐throughput methods can switch the specificity of NRPSs in a biosynthetically useful fashion.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Directed Evolution of Piperazic Acid Incorporation by a Nonribosomal Peptide Synthetase ** ; day:18 ; month:07 ; year:2023 ; extent:7
Angewandte Chemie / International edition. International edition ; (18.07.2023) (gesamt 7)

Creator
Stephan, Philipp
Langley, Chloe
Winkler, Daniela
Basquin, Jérôme
Caputi, Lorenzo
O'Connor, Sarah
Kries, Hajo

DOI
10.1002/anie.202304843
URN
urn:nbn:de:101:1-2023071815244190111035
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:47 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)