Likelihood-ratio test statistic for the finite-sample case in nonlinear ordinary differential equation models

Abstract: Likelihood ratios are frequently utilized as basis for statistical tests, for model selection criteria and for assessing parameter and prediction uncertainties, e.g. using the profile likelihood. However, translating these likelihood ratios into p-values or confidence intervals requires the exact form of the test statistic’s distribution. The lack of knowledge about this distribution for nonlinear ordinary differential equation (ODE) models requires an approximation which assumes the so-called asymptotic setting, i.e. a sufficiently large amount of data. Since the amount of data from quantitative molecular biology is typically limited in applications, this finite-sample case regularly occurs for mechanistic models of dynamical systems, e.g. biochemical reaction networks or infectious disease models. Thus, it is unclear whether the standard approach of using statistical thresholds derived for the asymptotic large-sample setting in realistic applications results in valid conclusions. In this study, empirical likelihood ratios for parameters from 19 published nonlinear ODE benchmark models are investigated using a resampling approach for the original data designs. Their distributions are compared to the asymptotic approximation and statistical thresholds are checked for conservativeness. It turns out, that corrections of the likelihood ratios in such finite-sample applications are required in order to avoid anti-conservative results

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
PLoS Computational Biology. - 19, 9 (2023) , e1011417, ISSN: 1553-7358

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2023
Urheber

DOI
10.1371/journal.pcbi.1011417
URN
urn:nbn:de:bsz:25-freidok-2401924
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2023

Ähnliche Objekte (12)