Bi‐embeddability spectra and bases of spectra
Abstract: We study degree spectra of structures with respect to the bi‐embeddability relation. The bi‐embeddability spectrum of a structure is the family of Turing degrees of its bi‐embeddable copies. To facilitate our study we introduce the notions of bi‐embeddable triviality and basis of a spectrum. Using bi‐embeddable triviality we show that several known families of degrees are bi‐embeddability spectra of structures. We then characterize the bi‐embeddability spectra of linear orderings and study bases of bi‐embeddability spectra of strongly locally finite graphs.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Bi‐embeddability spectra and bases of spectra ; volume:65 ; number:2 ; year:2019 ; pages:228-236 ; extent:9
Mathematical logic quarterly ; 65, Heft 2 (2019), 228-236 (gesamt 9)
- Urheber
- DOI
-
10.1002/malq.201800056
- URN
-
urn:nbn:de:101:1-2022071711134861185002
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:32 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Fokina, Ekaterina
- Rossegger, Dino
- San Mauro, Luca