Bi‐embeddability spectra and bases of spectra

Abstract: We study degree spectra of structures with respect to the bi‐embeddability relation. The bi‐embeddability spectrum of a structure is the family of Turing degrees of its bi‐embeddable copies. To facilitate our study we introduce the notions of bi‐embeddable triviality and basis of a spectrum. Using bi‐embeddable triviality we show that several known families of degrees are bi‐embeddability spectra of structures. We then characterize the bi‐embeddability spectra of linear orderings and study bases of bi‐embeddability spectra of strongly locally finite graphs.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Bi‐embeddability spectra and bases of spectra ; volume:65 ; number:2 ; year:2019 ; pages:228-236 ; extent:9
Mathematical logic quarterly ; 65, Heft 2 (2019), 228-236 (gesamt 9)

Creator
Fokina, Ekaterina
Rossegger, Dino
San Mauro, Luca

DOI
10.1002/malq.201800056
URN
urn:nbn:de:101:1-2022071711134861185002
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:32 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)