Bi‐embeddability spectra and bases of spectra
Abstract: We study degree spectra of structures with respect to the bi‐embeddability relation. The bi‐embeddability spectrum of a structure is the family of Turing degrees of its bi‐embeddable copies. To facilitate our study we introduce the notions of bi‐embeddable triviality and basis of a spectrum. Using bi‐embeddable triviality we show that several known families of degrees are bi‐embeddability spectra of structures. We then characterize the bi‐embeddability spectra of linear orderings and study bases of bi‐embeddability spectra of strongly locally finite graphs.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Bi‐embeddability spectra and bases of spectra ; volume:65 ; number:2 ; year:2019 ; pages:228-236 ; extent:9
Mathematical logic quarterly ; 65, Heft 2 (2019), 228-236 (gesamt 9)
- Creator
- DOI
-
10.1002/malq.201800056
- URN
-
urn:nbn:de:101:1-2022071711134861185002
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:32 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Fokina, Ekaterina
- Rossegger, Dino
- San Mauro, Luca