Artikel

Sequential optimality conditions for cardinality-constrained optimization problems with applications

Recently, a new approach to tackle cardinality-constrained optimization problems based on a continuous reformulation of the problem was proposed. Following this approach, we derive a problem-tailored sequential optimality condition, which is satisfied at every local minimizer without requiring any constraint qualification. We relate this condition to an existing M-type stationary concept by introducing a weak sequential constraint qualification based on a cone-continuity property. Finally, we present two algorithmic applications: We improve existing results for a known regularization method by proving that it generates limit points satisfying the aforementioned optimality conditions even if the subproblems are only solved inexactly. And we show that, under a suitable Kurdyka–Łojasiewicz-type assumption, any limit point of a standard (safeguarded) multiplier penalty method applied directly to the reformulated problem also satisfies the optimality condition. These results are stronger than corresponding ones known for the related class of mathematical programs with complementarity constraints.

Sprache
Englisch

Erschienen in
Journal: Computational Optimization and Applications ; ISSN: 1573-2894 ; Volume: 80 ; Year: 2021 ; Issue: 1 ; Pages: 185-211 ; New York, NY: Springer US

Klassifikation
Mathematik
Thema
Cardinality constraints
Sequential optimality condition
Cone-continuity type constraint qualification
Relaxation method
Augmented Lagrangian method

Ereignis
Geistige Schöpfung
(wer)
Kanzow, Christian
Raharja, Andreas B.
Schwartz, Alexandra
Ereignis
Veröffentlichung
(wer)
Springer US
(wo)
New York, NY
(wann)
2021

DOI
doi:10.1007/s10589-021-00298-z
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Kanzow, Christian
  • Raharja, Andreas B.
  • Schwartz, Alexandra
  • Springer US

Entstanden

  • 2021

Ähnliche Objekte (12)