The commuting graph of a solvable -group

Abstract: Let be a finite group. Recall that an -group is a group whose Sylow subgroups are all abelian. In this paper, we investigate the upper bound on the diameter of the commuting graph of a solvable -group. Assuming that the commuting graph is connected, we show when the derived length of is 2, the diameter of the commuting graph will be at most 4. In the general case, we show that the diameter of the commuting graph will be at most 6. In both cases, examples are provided to show that the upper bound of the commuting graph cannot be improved.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
The commuting graph of a solvable -group ; volume:28 ; number:1 ; year:2025 ; pages:165-178 ; extent:14
Journal of group theory ; 28, Heft 1 (2025), 165-178 (gesamt 14)

Creator
Carleton, Rachel
Lewis, Mark L.

DOI
10.1515/jgth-2023-0076
URN
urn:nbn:de:101:1-2501041702048.851735197670
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:23 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Carleton, Rachel
  • Lewis, Mark L.

Other Objects (12)