One‐Shot Active Learning for Globally Optimal Battery Electrolyte Conductivity **

Abstract: Non‐aqueous aprotic battery electrolytes need to perform well over a wide range of temperatures in practical applications. Herein we present a one‐shot active learning study to find all conductivity optima, confidence bounds, and relating formulation trends in the temperature range from −30 °C to 60 °C. This optimization is enabled by a high‐throughput formulation and characterization setup guided by one‐shot active learning utilizing robust and heavily regularized polynomial regression. Whilst there is an initially good agreement for intermediate and low temperatures, there is a need for the active learning step to improve the model for high temperatures. Optimized electrolyte formulations likely correspond to the highest physically possible conductivities within this formulation system when compared to literature data. A thorough error propagation analysis yields a fidelity assessment of conductivity measurements and electrolyte formulation.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
One‐Shot Active Learning for Globally Optimal Battery Electrolyte Conductivity ** ; day:23 ; month:08 ; year:2022 ; extent:1
Batteries & supercaps ; (23.08.2022) (gesamt 1)

Urheber
Rahmanian, Fuzhan
Vogler, Monika
Wölke, Christian
Yan, Peng
Winter, Martin
Cekic‐Laskovic, Isidora
Stein, Helge Sören

DOI
10.1002/batt.202200228
URN
urn:nbn:de:101:1-2022082415095576092058
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:38 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Rahmanian, Fuzhan
  • Vogler, Monika
  • Wölke, Christian
  • Yan, Peng
  • Winter, Martin
  • Cekic‐Laskovic, Isidora
  • Stein, Helge Sören

Ähnliche Objekte (12)