Konferenzbeitrag

Cost-Sensitive Learning in Answer Extraction

One problem of data-driven answer extraction in open-domain factoid question answering is that the class distribution of labeled training data is fairly imbalanced. In an ordinary training set, there are far more incorrect answers than correct answers. The class-imbalance is, thus, inherent to the classification task. It has a deteriorating effect on the performance of classifiers trained by standard machine learning algorithms. They usually have a heavy bias towards the majority class, i.e. the class which occurs most often in the training set. In this paper, we propose a method to tackle class imbalance by applying some form of cost-sensitive learning which is preferable to sampling. We present a simple but effective way of estimating the misclassification costs on the basis of class distribution. This approach offers three benefits. Firstly, it maintains the distribution of the classes of the labeled training data. Secondly, this form of meta-learning can be applied to a wide range of common learning algorithms. Thirdly, this approach can be easily implemented with the help of state-of-the-art machine learning software.

Cost-Sensitive Learning in Answer Extraction

Urheber*in: Wiegand, Michael; Leidner, Jochen L.; Klakow, Dietrich

Namensnennung 4.0 International

0
/
0

Sprache
Englisch

Thema
Computerlinguistik
Information Extraction
Maschinelles Lernen
Natürliche Sprache
Sprache

Ereignis
Geistige Schöpfung
(wer)
Wiegand, Michael
Leidner, Jochen L.
Klakow, Dietrich
Ereignis
Veröffentlichung
(wer)
Paris : European Language Resources Association
(wann)
2019-02-28

URN
urn:nbn:de:bsz:mh39-85373
Letzte Aktualisierung
06.03.2025, 09:00 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Leibniz-Institut für Deutsche Sprache - Bibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Konferenzbeitrag

Beteiligte

  • Wiegand, Michael
  • Leidner, Jochen L.
  • Klakow, Dietrich
  • Paris : European Language Resources Association

Entstanden

  • 2019-02-28

Ähnliche Objekte (12)