Voice efficiency for different voice qualities combining experimentally derived sound signals and numerical modeling of the vocal tract

Abstract: Purpose: Concerning voice efficiency considerations of different singing styles, from western classical singing to contemporary commercial music, only limited data is available to date. This single-subject study attempts to quantify the acoustic sound intensity within the human glottis depending on different vocal tract configurations and vocal fold vibration.

Methods: Combining Finite-Element-Models derived from 3D-MRI data, audio recordings, and electroglottography (EGG) we analyzed vocal tract transfer functions, particle velocity and acoustic pressure at the glottis, and EGG-related quantities to evaluate voice efficiency at the glottal level and resonance characteristics of different voice qualities according to Estill Voice Training®.

Results: Voice qualities Opera and Belting represent highly efficient strategies but apply different vowel strategies and should thus be capable of predominate orchestral sounds. Twang and Belting use similar vowels, but the twang vocal tract configuration enabled the occurrence of anti-resonances and was associated with reduced vocal fold contact but still partially comparable energy transfer from the glottis to the vocal tract. Speech was associated with highly efficient glottal to vocal tract energy transfer, but with the absence of psychoactive strategies makes it more susceptible to noise interference. Falsetto and Sobbing apply less efficiently. Falsetto mainly due to its voice source characteristics, Sobbing due to energy loss in the vocal tract. Thus technical amplification might be appropriate here.

Conclusion: Differences exist between voice qualities regarding the sound intensity, caused by different vocal tract morphologies and oscillation characteristics of the vocal folds. The combination of numerical analysis of geometries inside the human body and experimentally determined data outside sheds light on acoustical quantities at the glottal level

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Frontiers in physiology. - 13 (2022) , 1081622, ISSN: 1664-042X

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2023
Creator
Fleischer, Mario
Rummel, Stefanie
Stritt, Fiona
Fischer, Johannes
Bock, Michael
Echternach, Matthias
Richter, Bernhard
Traser, Louisa

DOI
10.3389/fphys.2022.1081622
URN
urn:nbn:de:bsz:25-freidok-2324356
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:43 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2023

Other Objects (12)