Arbeitspapier

Optimal forecasts in the presence of discrete structural breaks under long memory

We develop methods to obtain optimal forecast under long memory in the presence of a discrete structural break based on different weighting schemes for the observations. We observe significant changes in the forecasts when long-range dependence is taken into account. Using Monte Carlo simulations, we confirm that our methods substantially improve the forecasting performance under long memory. We further present an empirical application to in inflation rates that emphasizes the importance of our methods.

Language
Englisch

Bibliographic citation
Series: Hannover Economic Papers (HEP) ; No. 705

Classification
Wirtschaft
Hypothesis Testing: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Subject
long memory
forecasting
structural break
optimal weight
ARFIMA model

Event
Geistige Schöpfung
(who)
Mboya, Mwasi Paza
Sibbertsen, Philipp
Event
Veröffentlichung
(who)
Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät
(where)
Hannover
(when)
2022

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Mboya, Mwasi Paza
  • Sibbertsen, Philipp
  • Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät

Time of origin

  • 2022

Other Objects (12)