Arbeitspapier

Nonparametric confidence bands in deconvolution density estimation

Uniform confidence bands for densities f via nonparametric kernel estimates were first constructed by Bickel and Rosenblatt [Ann. Statist. 1, 1071.1095]. In this paper this is extended to confidence bands in the deconvolution problem g = f for an ordinary smooth error density . Under certain regularity conditions, we obtain asymptotic uniform confidence bands based on the asymptotic distribution of the maximal deviation (LÉ-distance) between a deconvolution kernel estimator . f and f. Further consistency of the simple nonparametric bootstrap is proved. For our theoretical developments the bias is simply corrected by choosing an undersmoothing bandwidth. For practical purposes we propose a new data-driven bandwidth selector based on heuristic arguments, which aims

Sprache
Englisch

Erschienen in
Series: Technical Report ; No. 2007,03

Ereignis
Geistige Schöpfung
(wer)
Bissantz, Nicolai
Dümbgen, Lutz
Holzmann, Hajo
Munk, Axel
Ereignis
Veröffentlichung
(wer)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(wo)
Dortmund
(wann)
2007

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Bissantz, Nicolai
  • Dümbgen, Lutz
  • Holzmann, Hajo
  • Munk, Axel
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Entstanden

  • 2007

Ähnliche Objekte (12)