Arbeitspapier

Nonparametric Kernel density estimation near the boundary

Standard fixed symmetric kernel type density estimators are known to encounter problems for positive random variables with a large probability mass close to zero. We show that in such settings, alternatives of asymmetric gamma kernel estimators are superior but also differ in asymptotic and finite sample performance conditional on the shape of the density near zero and the exact form of the chosen kernel. We therefore suggest a refined version of the gamma kernel with an additional tuning parameter according to the shape of the density close to the boundary. We also provide a data-driven method for the appropriate choice of the modified gamma kernel estimator. In an extensive simulation study we compare the performance of this refined estimator to standard gamma kernel estimates and standard boundary corrected and adjusted fixed kernels. We find that the finite sample performance of the proposed new estimator is superior in all settings. Two empirical applications based on high-frequency stock trading volumes and realized volatility forecasts demonstrate the usefulness of the proposed methodology in practice.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2012-047

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Model Construction and Estimation
Thema
Kernel density estimation
boundary correction
asymmetric kernel
Nichtparametrisches Verfahren
Schätztheorie
Theorie
Schätzung
Handelsvolumen der Börse
Börsenkurs
Volatilität

Ereignis
Geistige Schöpfung
(wer)
Malec, Peter
Schienle, Melanie
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2012

Handle
Letzte Aktualisierung
20.09.2024, 08:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Malec, Peter
  • Schienle, Melanie
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2012

Ähnliche Objekte (12)