Arbeitspapier

Multivariate and semiparametric kernel regression

The paper gives an introduction to theory and application of multivariate and semiparametric kernel smoothing. Multivariate nonparametric density estimation is an often used pilot tool for examining the structure of data. Regression smoothing helps in investigating the association between covariates and responses. We concentrate on kernel smoothing using local polynomial fitting which includes the Nadaraya-Watson estimator. Some theory on the asymptotic behavior and bandwidth selection is provided. In the applications of the kernel technique, we focus on the semiparametric paradigm. In more detail we describe the single index model (SIM) and the generalized partial linear model (GPLM).

Language
Englisch

Bibliographic citation
Series: SFB 373 Discussion Paper ; No. 1997,26

Classification
Wirtschaft

Event
Geistige Schöpfung
(who)
Härdle, Wolfgang
Müller, Marlene
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
(where)
Berlin
(when)
1997

Handle
URN
urn:nbn:de:kobv:11-10064120
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Härdle, Wolfgang
  • Müller, Marlene
  • Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Time of origin

  • 1997

Other Objects (12)