Arbeitspapier

Large sample theory in a semiparametric partially linear errors-in-variables models

We consider the partially linear model relating a response Y to predictors (X,T) with mean function XT ß + g (T) when the X's are measured with additive error. The semiparametric likelihood estimate of Severini and Staniswalis (1994) leads to biased estimates of both the parameter ß and the function g(·) when measurement error is ignored. We derive a simple modification of their estimator which is a semiparametric version of the usual parametric correction for attenuation. The resulting estimator of ß is shown to be consistent and its asymptotic distribution theory is derived. Consistent standard error estimates using sandwich-type ideas are also developed.

Sprache
Englisch

Erschienen in
Series: SFB 373 Discussion Paper ; No. 1997,27

Klassifikation
Wirtschaft
Thema
Measurement Error
Errors-in-Variables
Functional Relations
Non-parametric Likelihood
Orthogonal Regression
Partially Linear Model
Semiparametric Models
Structural Relations

Ereignis
Geistige Schöpfung
(wer)
Liang, Hua
Härdle, Wolfgang
Carroll, Raymond J.
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
(wo)
Berlin
(wann)
1997

Handle
URN
urn:nbn:de:kobv:11-10064133
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Liang, Hua
  • Härdle, Wolfgang
  • Carroll, Raymond J.
  • Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Entstanden

  • 1997

Ähnliche Objekte (12)