Arbeitspapier

Large sample theory in a semiparametric partially linear errors-in-variables models

We consider the partially linear model relating a response Y to predictors (X,T) with mean function XT ß + g (T) when the X's are measured with additive error. The semiparametric likelihood estimate of Severini and Staniswalis (1994) leads to biased estimates of both the parameter ß and the function g(·) when measurement error is ignored. We derive a simple modification of their estimator which is a semiparametric version of the usual parametric correction for attenuation. The resulting estimator of ß is shown to be consistent and its asymptotic distribution theory is derived. Consistent standard error estimates using sandwich-type ideas are also developed.

Language
Englisch

Bibliographic citation
Series: SFB 373 Discussion Paper ; No. 1997,27

Classification
Wirtschaft
Subject
Measurement Error
Errors-in-Variables
Functional Relations
Non-parametric Likelihood
Orthogonal Regression
Partially Linear Model
Semiparametric Models
Structural Relations

Event
Geistige Schöpfung
(who)
Liang, Hua
Härdle, Wolfgang
Carroll, Raymond J.
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
(where)
Berlin
(when)
1997

Handle
URN
urn:nbn:de:kobv:11-10064133
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Liang, Hua
  • Härdle, Wolfgang
  • Carroll, Raymond J.
  • Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Time of origin

  • 1997

Other Objects (12)