Robust subtyping of non‐small cell lung cancer whole sections through MALDI mass spectrometry imaging

Subtyping of the most common non‐small cell lung cancer (NSCLC) tumor types adenocarcinoma (ADC) and squamous cell carcinoma (SqCC) is still a challenge in the clinical routine and a correct diagnosis is crucial for an adequate therapy selection. Matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has shown potential for NSCLC subtyping but is subject to strong technical variability and has only been applied to tissue samples assembled in tissue microarrays (TMAs). To our knowledge, a successful transfer of a classifier from TMAs to whole sections, which are generated in the standard clinical routine, has not been presented in the literature as of yet. We introduce a classification algorithm using extensive preprocessing and a classifier (either a neural network or a linear discriminant analysis (LDA)) to robustly classify whole sections of ADC and SqCC lung tissue. The classifiers were trained on TMAs and validated and tested on whole sections. Vital for a successful application on whole sections is the extensive preprocessing and the use of whole sections for hyperparameter selection. The classification system with the neural network/LDA results in 99.0%/98.3% test accuracy on spectra level and 100.0%/100.0% test accuracy on whole section level, respectively, and, therefore, provides a powerful tool to support the pathologist's decision making process. The presented method is a step further towards a clinical application of MALDI MSI and artificial intelligence for subtyping of NSCLC tissue sections.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Robust subtyping of non‐small cell lung cancer whole sections through MALDI mass spectrometry imaging ; day:10 ; month:03 ; year:2022 ; extent:10
Proteomics / Clinical applications. Clinical applications ; (10.03.2022) (gesamt 10)

Urheber
Janßen, Charlotte
Boskamp, Tobias
Hauberg‐Lotte, Lena
Behrmann, Jens
Deininger, Sören‐Oliver
Kriegsmann, Mark
Kriegsmann, Katharina
Steinbuß, Georg
Winter, Hauke
Muley, Thomas
Casadonte, Rita
Kriegsmann, Jörg
Maaß, Peter

DOI
10.1002/prca.202100068
URN
urn:nbn:de:101:1-2022031114022610534748
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:36 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)