Disfluency prediction in natural spoken language
Abstract: Until recently, disfluencies in human language were outside of the focus of linguistic research. However, with the advent of technologies such as digital personal assistants, this approach changed. In order to mimic natural conversation, it is necessary to create a natural sounding output, including phenomena deemed undesirable in an idealized view of the language, such as disfluencies. This thesis presents two novel approaches to disfluency prediction. It extends the list of known predictors of disfluencies with surprisal, a measure of processing complexity derived from psycholinguistic and information-theoretic observations. Additionally, it presents a computational-linguistic approach in which a machine translation architecture (encoder-decoder) is used for the prediction of disfluencies
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Notes
-
Universität Freiburg, Dissertation, 2019
- Keyword
-
Englisch
Maschinelles Lernen
Verzögerungsphänomen
Korpus
Informationstheorie
- Event
-
Veröffentlichung
- (where)
-
Freiburg
- (who)
-
Universität
- (when)
-
2021
- Creator
- Contributor
-
Mair, Christian
Nerbonne, John A.
Albert-Ludwigs-Universität Freiburg. Englisches Seminar
DFG-GRK 1624 "Frequenzeffekte"
Hermann Paul School of Linguistics Basel-Freiburg
Albert-Ludwigs-Universität Freiburg. Philologische Fakultät
- DOI
-
10.6094/978-3-928969-84-0
- URN
-
urn:nbn:de:bsz:25-freidok-2197227
- Rights
-
Kein Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
21.03.2025, 12:12 AM CET
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Zámečník, Jiří
- Mair, Christian
- Nerbonne, John A.
- Albert-Ludwigs-Universität Freiburg. Englisches Seminar
- DFG-GRK 1624 "Frequenzeffekte"
- Hermann Paul School of Linguistics Basel-Freiburg
- Albert-Ludwigs-Universität Freiburg. Philologische Fakultät
- Universität
Time of origin
- 2021