Electrochemical investigations of sulfur‐decorated organic materials as cathodes for alkali batteries

Abstract: Alkali metal–sulfur batteries (particularly, lithium/sodium- sulfur (Li/Na–S)) have attracted much attention because of their high energy density, the natural abundance of sulfur, and environmental friendliness. However, Li/Na–S batteries still face big challenges, such as limited cycle life, poor conductivity, large volume changes, and the “shuttle effect” caused by the high solubility of Li/Na–polysulfides. Herein, novel organosulfur-containing materials, i.e., bis(4-hydroxy-2,2,6,6-tetramethylpiperidin-1-yl)disulfide (BiTEMPS-OH) and 2,4-thiophene/arene copolymer (TAC) are proposed as cathode materials for Li and Na batteries. BiTEMPS-OH shows an initial discharge/charge capacity of 353/192 mAh g−1 and a capacity of 62 mAh g−1 after 200 cycles at 100 mA g−1 in ether-based Li-ion electrolyte. Meanwhile, TAC has an initial discharge/charge capacity of 270/248 mAh g−1 and better cycling performance (106 mAh g−1 after 200 cycles) than BiTEMPS-OH in the same electrolyte. However, the rate capability of TAC is limited by the slow diffusion of Li-ions. Both materials show inferior electrochemical performances in Na battery cells compared to the Li analogs. X-ray powder diffraction reveals that BiTEMPS-OH loses its crystalline structure permanently upon cycling in Li battery cells. X-ray photoelectron spectroscopy demonstrates the cleavage and partially reversible formation of S−S bonds in BiTEMPS-OH and the formation/decomposition of thick solid electrolyte interphase on the electrode surface of TAC

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Small. - 20, 24 (2024) , 2311800, ISSN: 1613-6829

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2024
Creator
Fu, Qiang
Zhao, Lei
Luo, Xianlin
Hobich, Jan
Döpping, Daniel
Rehnlund, David
Mutlu, Hatice
Dsoke, Sonia

DOI
10.1002/smll.202311800
URN
urn:nbn:de:bsz:25-freidok-2532201
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:44 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2024

Other Objects (12)