Model selection for component network meta-analysis in connected and disconnected networks: a simulation study

Abstract: Background

Network meta-analysis (NMA) allows estimating and ranking the effects of several interventions for a clinical condition. Component network meta-analysis (CNMA) is an extension of NMA which considers the individual components of multicomponent interventions. CNMA allows to “reconnect” a disconnected network with common components in subnetworks. An additive CNMA assumes that component effects are additive. This assumption can be relaxed by including interaction terms in the CNMA.
Methods

We evaluate a forward model selection strategy for component network meta-analysis to relax the additivity assumption that can be used in connected or disconnected networks. In addition, we describe a procedure to create disconnected networks in order to evaluate the properties of the model selection in connected and disconnected networks. We apply the methods to simulated data and a Cochrane review on interventions for postoperative nausea and vomiting in adults after general anaesthesia. Model performance is compared using average mean squared errors and coverage probabilities.
Results

CNMA models provide good performance for connected networks and can be an alternative to standard NMA if additivity holds. For disconnected networks, we recommend to use additive CNMA only if strong clinical arguments for additivity exist.
Conclusions

CNMA methods are feasible for connected networks but questionable for disconnected networks

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
BMC medical research methodology. - 23, 1 (2023) , 140, ISSN: 1471-2288

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2023
Urheber

DOI
10.1186/s12874-023-01959-9
URN
urn:nbn:de:bsz:25-freidok-2373270
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2023

Ähnliche Objekte (12)