Arbeitspapier

Robust filtering of time series with trends

We develop and test a robust procedure for extracting an underlying signal in form of a time-varying trend from very noisy time series. The application we have in mind is online monitoring data measured in intensive care, where we find periods of relative constancy, slow monotonic trends, level shifts and many measurement artifacts. A procedure is needed which allows a fast and reliable denoising of the data and which distinguishes artifacts from clinically relevant changes in the patient's condition. We use robust regression functionals for local approximation of the trend in a moving time window. For further improving the robustness of the procedure we investigate online outlier replacement by e.g. trimming or winsorization based on robust scale estimators. The performance of several versions of the procedure is compared in important data situations and applications to real and simulated data are given.

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 2003,30

Subject
Online monitoring
Signal extraction
Level shift
Trend
Outlier
Bias curve
Zeitreihenanalyse
Theorie
Trend

Event
Geistige Schöpfung
(who)
Fried, Roland H.
Event
Veröffentlichung
(who)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
2003

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Fried, Roland H.
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 2003

Other Objects (12)