Arbeitspapier
Filtering the noise from time series and spatial data
Noisy observations form the basis for almost every scientific research and especially in environmental monitoring. The Noise is often an effect of imprecise instruments which cause measurement errors. If the noise variance is known it is possible to filter out the contaminating noise from the observations and then to predict the latent signal process. Solutions for this problem exist for time series application and will be briefly reviewed. In the geostatistical literature, i.e. for the analysis of spatial data, similar methods have been foreshadowed in the literature and will be outlined in this work.
- Sprache
-
Englisch
- Erschienen in
-
Series: Technical Report ; No. 1998,18
- Thema
-
Geostatistics
Kalman Filter
Kriging
Prediction
Signal
Time Series Analysis
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Berke, Olaf
- Ereignis
-
Veröffentlichung
- (wer)
-
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
- (wo)
-
Dortmund
- (wann)
-
1998
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Berke, Olaf
- Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
Entstanden
- 1998