Epoxy‐rich Fe Single Atom Sites Boost Oxygen Reduction Electrocatalysis

Abstract: Electrocatalysts for highly efficient oxygen reduction reaction (ORR) are crucial for energy conversion and storage devices. Single‐atom catalysts with maximized metal utilization and altered electronic structure are the most promising alternatives to replace current benchmark precious metals. However, the atomic level understanding of the functional role for each species at the anchoring sites is still unclear and poorly elucidated. Herein, we report Fe single atom catalysts with the sulfur and oxygen functional groups near the atomically dispersed metal centers (Fe1/NSOC) for highly efficient ORR. The Fe1/NSOC delivers a half‐wave potential of 0.92 V vs. RHE, which is much better than those of commercial Pt/C (0.88 V), Fe single atoms on N‐doped carbon (Fe1/NC, 0.89 V) and most reported nonprecious metal catalysts. The spectroscopic measurements reveal that the presence of sulfur group induces the formation of epoxy groups near the FeN4S2 centers, which not only modulate the electronic structure of Fe single atoms but also participate the catalytic process to improve the kinetics. The density functional theory calculations demonstrate the existence of sulfur and epoxy group engineer the charges of Fe reactive center and facilitate the reductive release of OH* (rate‐limiting step), thus boosting the overall oxygen reduction efficiency.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Epoxy‐rich Fe Single Atom Sites Boost Oxygen Reduction Electrocatalysis ; day:27 ; month:07 ; year:2023 ; extent:9
Angewandte Chemie / International edition. International edition ; (27.07.2023) (gesamt 9)

Creator
Zhao, Yufei
Shen, Ziyan
Huo, Juanjuan
Cao, Xianjun
Ou, Pengfei
Qu, Junpeng
Nie, Xinming
Zhang, Jinqiang
Wu, Minghong
Wang, Guoxiu
Liu, Hao

DOI
10.1002/anie.202308349
URN
urn:nbn:de:101:1-2023072815324726937373
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:48 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Zhao, Yufei
  • Shen, Ziyan
  • Huo, Juanjuan
  • Cao, Xianjun
  • Ou, Pengfei
  • Qu, Junpeng
  • Nie, Xinming
  • Zhang, Jinqiang
  • Wu, Minghong
  • Wang, Guoxiu
  • Liu, Hao

Other Objects (12)