Small-scale roughness entraps water and controls underwater adhesion

Abstract: While controlling underwater adhesion is critical for designing biological adhesives and in improving the traction of tires, haptics, or adhesives for health monitoring devices, it is hindered by a lack of fundamental understanding of how the presence of trapped water impedes interfacial bonding. Here, by using well-characterized polycrystal diamond surfaces and soft, nonhysteretic, low–surface energy elastomers, we show a reduction in adhesion during approach and four times higher adhesion during retraction as compared to the thermodynamic work of adhesion. Our findings reveal how the loading phase of contact is governed by the entrapment of water by ultrasmall (10-nanometer-scale) surface features. In contrast, the same nanofeatures that reduce adhesion during approach serve to increase adhesion during separation. The explanation for this counterintuitive result lies in the incompressibility-inextensibility of trapped water and the work needed to deform the polymer around water pockets. Unlike the well-known viscoelastic contribution to adhesion, this science unlocks strategies for tailoring surface topography to enhance underwater adhesion

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Science advances. - 10, 32 (2024) , eadn8343, ISSN: 2375-2548

Klassifikation
Fotografie, Computerkunst

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2025
Urheber
Kumar, Nityanshu
Dalvi, Siddhesh
Sumant, Anirudha V.
Pastewka, Lars
Jacobs, Tevis D. B.
Dhinojwala, Ali

DOI
10.1126/sciadv.adn8343
URN
urn:nbn:de:bsz:25-freidok-2616482
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:38 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Kumar, Nityanshu
  • Dalvi, Siddhesh
  • Sumant, Anirudha V.
  • Pastewka, Lars
  • Jacobs, Tevis D. B.
  • Dhinojwala, Ali
  • Universität

Entstanden

  • 2025

Ähnliche Objekte (12)