Urban Street Network Analysis in a Computational Notebook
Abstract: Computational notebooks offer researchers, practitioners, students, and educators the ability to interactively run code and disseminate reproducible workflows that weave together code, visuals, and narratives. This article explores the potential of computational notebooks in urban analytics and planning, demonstrating their utility through a case study of OSMnx and its tutorials repository. OSMnx is a Python package for working with OpenStreetMap data and modeling, analyzing, and visualizing street networks anywhere in the world. Its official demos and tutorials are distributed as open-source Jupyter notebooks on GitHub. This article showcases this resource by documenting the repository and demonstrating OSMnx interactively through a synoptic tutorial adapted from the repository. It illustrates how to download and model street networks for various study sites, compute network indicators, visualize street centrality, calculate routes, and work with other spatial data such as buildin
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Veröffentlichungsversion
begutachtet (peer reviewed)
In: Region: the journal of ERSA ; 6 (2019) 3 ; 39-51
- Ereignis
-
Veröffentlichung
- (wo)
-
Mannheim
- (wer)
-
SSOAR - Social Science Open Access Repository
- (wann)
-
2019
- Urheber
-
Boeing, Geoff
- DOI
-
10.18335/region.v6i3.278
- URN
-
urn:nbn:de:101:1-2021020515342710461327
- Rechteinformation
-
Open Access; Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:28 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Boeing, Geoff
- SSOAR - Social Science Open Access Repository
Entstanden
- 2019