Urban Street Network Analysis in a Computational Notebook

Abstract: Computational notebooks offer researchers, practitioners, students, and educators the ability to interactively run code and disseminate reproducible workflows that weave together code, visuals, and narratives. This article explores the potential of computational notebooks in urban analytics and planning, demonstrating their utility through a case study of OSMnx and its tutorials repository. OSMnx is a Python package for working with OpenStreetMap data and modeling, analyzing, and visualizing street networks anywhere in the world. Its official demos and tutorials are distributed as open-source Jupyter notebooks on GitHub. This article showcases this resource by documenting the repository and demonstrating OSMnx interactively through a synoptic tutorial adapted from the repository. It illustrates how to download and model street networks for various study sites, compute network indicators, visualize street centrality, calculate routes, and work with other spatial data such as buildin

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Veröffentlichungsversion
begutachtet (peer reviewed)
In: Region: the journal of ERSA ; 6 (2019) 3 ; 39-51

Ereignis
Veröffentlichung
(wo)
Mannheim
(wer)
SSOAR - Social Science Open Access Repository
(wann)
2019
Urheber
Boeing, Geoff

DOI
10.18335/region.v6i3.278
URN
urn:nbn:de:101:1-2021020515342710461327
Rechteinformation
Open Access; Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:28 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Boeing, Geoff
  • SSOAR - Social Science Open Access Repository

Entstanden

  • 2019

Ähnliche Objekte (12)