Arbeitspapier

Stochastic Orders of Proposing Players in Bargaining

The bargaining model with stochastic order of proposing players is properly embedded in continuous time and it is strategically equivalent to the alternating offers model. For all parameter values, the pair of equilibrium proposals corresponds to the Nash bargaining solution of a modified bargaining problem and the Maximum Theorem implies convergence to the Nash bargaining solution when time between proposals vanishes. The model unifies alternating offers, one-sided offers and random proposers. Only continuous-time Markov processes are firmly rooted in probability theory and offer fundamentally different limit results.

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. 05-063/1

Classification
Wirtschaft
Noncooperative Games
Stochastic and Dynamic Games; Evolutionary Games; Repeated Games
Bargaining Theory; Matching Theory
Subject
Bargaining
Negotiation
Alternating offers
Markov process
subgame perfect equilibrium
Nash bargaining solution
Maximum Theorem
Verhandlungstheorie
Dynamisches Spiel
Markovscher Prozess
Nash-Gleichgewicht
Theorie
Nichtkooperatives Spiel

Event
Geistige Schöpfung
(who)
Houba, Harold
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2005

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Houba, Harold
  • Tinbergen Institute

Time of origin

  • 2005

Other Objects (12)