Error estimates for total-variation regularized minimization problems with singular dual solutions
Abstract: Recent quasi-optimal error estimates for the finite element approximation of total-variation regularized minimization problems using the Crouzeix–Raviart element require the existence of a Lipschitz continuous dual solution, which is not generally given. We provide analytic proofs showing that the Lipschitz continuity of a dual solution is not necessary, in general. Using the Lipschitz truncation technique, we, in addition, derive error estimates that depend directly on the Sobolev regularity of a given dual solution
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Notes
-
Numerische Mathematik. - 152, 4 (2022) , 881-906, ISSN: 0945-3245
- Event
-
Veröffentlichung
- (where)
-
Freiburg
- (who)
-
Universität
- (when)
-
2022
- Creator
- DOI
-
10.1007/s00211-022-01324-w
- URN
-
urn:nbn:de:bsz:25-freidok-2309238
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
25.03.2025, 1:53 PM CET
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Bartels, Sören
- Kaltenbach, Alex
- Universität
Time of origin
- 2022