Error estimates for total-variation regularized minimization problems with singular dual solutions

Abstract: Recent quasi-optimal error estimates for the finite element approximation of total-variation regularized minimization problems using the Crouzeix–Raviart element require the existence of a Lipschitz continuous dual solution, which is not generally given. We provide analytic proofs showing that the Lipschitz continuity of a dual solution is not necessary, in general. Using the Lipschitz truncation technique, we, in addition, derive error estimates that depend directly on the Sobolev regularity of a given dual solution

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Numerische Mathematik. - 152, 4 (2022) , 881-906, ISSN: 0945-3245

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2022
Creator

DOI
10.1007/s00211-022-01324-w
URN
urn:nbn:de:bsz:25-freidok-2309238
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:53 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2022

Other Objects (12)