Coding energy knowledge in constructed responses with explainable NLP models

Abstract: Background : Formative assessments are needed to enable monitoring how student knowledge develops throughout a unit. Constructed response items which require learners to formulate their own free-text responses are well suited for testing their active knowledge. However, assessing such constructed responses in an automated fashion is a complex task and requires the application of natural language processing methodology. In this article, we implement and evaluate multiple machine learning models for coding energy knowledge in free-text responses of German K-12 students to items in formative science assessments which were conducted during synchronous online learning sessions. Dataset : The dataset we collected for this purpose consists of German constructed responses from 38 different items dealing with aspects of energy such as manifestation and transformation. The units and items were implemented with the help of project-based ...

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
In: Journal of computer assisted learning 39 (2022) 3, S. 767-786
ISSN: 1365-2729
(DE-600)2015214-0

Klassifikation
Allgemeines, Wissenschaft

Ereignis
Veröffentlichung
(wo)
Frankfurt
(wer)
DIPF Leibniz Institut für Bildungsforschung und Bildungsinformation
(wann)
2022
Urheber

DOI
10.25656/01:28441
URN
urn:nbn:de:0111-pedocs-284415
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:34 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2022

Ähnliche Objekte (12)