Many-particle interference beyond many-boson and many-fermion statistics
Abstract: Identical particles exhibit correlations even in the absence of inter-particle interaction, due to the exchange (anti)symmetry of the many-particle wavefunction. Two fermions obey the Pauli principle and anti-bunch, whereas two bosons favor bunched, doubly occupied states. Here, we show that the collective interference of three or more particles leads to much more diverse behavior than expected from the boson–fermion dichotomy known from quantum statistical mechanics. The emerging complexity of many-particle interference is tamed by a simple law for the strict suppression of events in the Bell multiport beam splitter. The law shows that counting events are governed by widely species-independent interference, such that bosons and fermions can even exhibit identical interference signatures, while their statistical character remains subordinate. Recent progress in the preparation of tailored many-particle states of bosonic and fermionic atoms promises experimental verification and applications in novel many-particle interferometers
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Notes
-
New Journal of Physics. 14, 9 (2012), 93015, DOI 10.1088/1367-2630/14/9/093015, issn: 1367-2630
IN COPYRIGHT http://rightsstatements.org/page/InC/1.0 rs
- Classification
-
Physik
- Keyword
-
Interferenz
Boson
Fermion
- Event
-
Veröffentlichung
- (where)
-
Freiburg
- (who)
-
Universität
- (when)
-
2012
- Creator
- Contributor
- DOI
-
10.1088/1367-2630/14/9/093015
- URN
-
urn:nbn:de:bsz:25-freidok-118752
- Rights
-
Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:31 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
Time of origin
- 2012