Artikel

Solving polyhedral d.c. optimization problems via concave minimization

The problem of minimizing the difference of two convex functions is called polyhedral d.c. optimization problem if at least one of the two component functions is polyhedral. We characterize the existence of global optimal solutions of polyhedral d.c. optimization problems. This result is used to show that, whenever the existence of an optimal solution can be certified, polyhedral d.c. optimization problems can be solved by certain concave minimization algorithms. No further assumptions are necessary in case of the first component being polyhedral and just some mild assumptions to the first component are required for the case where the second component is polyhedral. In case of both component functions being polyhedral, we obtain a primal and dual existence test and a primal and dual solution procedure. Numerical examples are discussed.

Sprache
Englisch

Erschienen in
Journal: Journal of Global Optimization ; ISSN: 1573-2916 ; Volume: 78 ; Year: 2020 ; Issue: 1 ; Pages: 37-47 ; New York, NY: Springer US

Klassifikation
Mathematik
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
Single Equation Models; Single Variables: Other
Social Economics‡
Thema
Global optimization
D.c. programming
Multi-objective linear programming
Linear vector optimization

Ereignis
Geistige Schöpfung
(wer)
vom Dahl, Simeon
Löhne, Andreas
Ereignis
Veröffentlichung
(wer)
Springer US
(wo)
New York, NY
(wann)
2020

DOI
doi:10.1007/s10898-020-00913-z
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • vom Dahl, Simeon
  • Löhne, Andreas
  • Springer US

Entstanden

  • 2020

Ähnliche Objekte (12)