Arbeitspapier

The minimal dominant set is a non-empty core-extension

A set of outcomes for a transferable utility game in characteristic function form is dominant if it is, with respect to an outsider-independent dominance relation, accessible (or admissible) and closed. This outsider-independent dominance relation is restrictive in the sense that a deviating coalition cannot determine the payoffs of those coalitions that are not involved in the deviation. The minimal (for inclusion) dominant set is non-empty and for a game with a non-empty coalition structure core, the minimal dominant set returns this core. We provide an algorithm to find the minimal dominant set.

Language
Englisch

Bibliographic citation
Series: IEHAS Discussion Papers ; No. MT-DP - 2004/21

Classification
Wirtschaft
Subject
dynamic solution
absorbing set
core
non-emptiness

Event
Geistige Schöpfung
(who)
Koczy, Laszlo A.
Lauwers, Luc
Event
Veröffentlichung
(who)
Hungarian Academy of Sciences, Institute of Economics
(where)
Budapest
(when)
2004

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Koczy, Laszlo A.
  • Lauwers, Luc
  • Hungarian Academy of Sciences, Institute of Economics

Time of origin

  • 2004

Other Objects (12)