Arbeitspapier
The minimal dominant set is a non-empty core-extension
A set of outcomes for a transferable utility game in characteristic function form is dominant if it is, with respect to an outsider-independent dominance relation, accessible (or admissible) and closed. This outsider-independent dominance relation is restrictive in the sense that a deviating coalition cannot determine the payoffs of those coalitions that are not involved in the deviation. The minimal (for inclusion) dominant set is non-empty and for a game with a non-empty coalition structure core, the minimal dominant set returns this core. We provide an algorithm to find the minimal dominant set.
- Language
-
Englisch
- Bibliographic citation
-
Series: IEHAS Discussion Papers ; No. MT-DP - 2004/21
- Classification
-
Wirtschaft
- Subject
-
dynamic solution
absorbing set
core
non-emptiness
- Event
-
Geistige Schöpfung
- (who)
-
Koczy, Laszlo A.
Lauwers, Luc
- Event
-
Veröffentlichung
- (who)
-
Hungarian Academy of Sciences, Institute of Economics
- (where)
-
Budapest
- (when)
-
2004
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Koczy, Laszlo A.
- Lauwers, Luc
- Hungarian Academy of Sciences, Institute of Economics
Time of origin
- 2004