Coherent sheaves on Calabi-Yau manifolds, Picard-Fuchs equations and potential functions
Abstract: We investigate the deformation theory of Calabi-Yau threefolds -- simply connected complex projective manifolds with trivial canonical bundle -- together with geometric objects on the Calabi-Yau threefold. The geometric objects in question are curves, surfaces, special coherent sheaves and rank-two vector bundles with a section vanishing in codimension two.
These deformation problems are related to the study of Picard-Fuchs equations. Physicists suggest that a holomorphic potential function the critical locus of which is the space of unobstructed deformations appears as a solution of the Picard-Fuchs equation.
In this thesis, Picard-Fuchs equations for Calabi-Yau threefolds
appearing as complete intersections of codimension two in projective spaces are studied. In addition, Picard-Fuchs equations for pairs of a Calabi-Yau threefold and either a divisor or a curve on the threefold are examined. We construct Picard-Fuchs equations using Griffiths-Dwork reduction.
Based on the work of Jockers and Soroush, we give rigorous mathematical foundations for deriving Picard-Fuchs operators in various cases, in particular for the quintic threefold together with a special divisor.
Furthermore, we initiate a theory of triples consisting of a threefold with two divisors meeting transversally along a curve and set up Picard-Fuchs operators for this situation. The thesis furthermore contains some SINGULAR programmes for explicit calculations
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Universität Freiburg, Dissertation, 2018
- Schlagwort
-
Komplexe Geometrie
Stringtheorie
Hodge-Struktur
Calabi-Yau-Mannigfaltigkeit
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2018
- Urheber
- Beteiligte Personen und Organisationen
- DOI
-
10.6094/UNIFR/17082
- URN
-
urn:nbn:de:bsz:25-freidok-170821
- Rechteinformation
-
Kein Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
25.03.2025, 13:46 MEZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
Entstanden
- 2018