Journal article | Zeitschriftenartikel

Using hierarchically linear models to analyze multilevel data

'Vom 2. bis 5. Juli dieses Jahres fand bei ZUMA der Workshop 'The Analysis of Hierarchically Nested Data' statt, der von Dr. Ita G. G. Kreft, California State University, Los Angeles durchgeführt wurde. Mit dieser Veranstaltung wurde die Reihe der ZUMA-Workshops fortgesetzt, die in den letzten Jahren Themen der Mehrebenenanalyse zum Gegenstand hatten. Unter Mehrebenenanalyse ist jedes statistische Verfahren zu verstehen, mit dem Beziehungen zwischen Einheiten oder Variablen unterschiedlichen Aggregationsniveaus statistisch überprüft werden kann. Traditionell haben der Gegensatz von Makro- und Mikrosoziologie und die Idee homologer Beziehungen zwischen Daten der Makro- und der Mikroebene die Ansätze der Mehrebenenanalyse dominiert. Die Grenzen dieser Vorstellung sind in der Literatur in einer Fülle von Beispielen zum sogenannten ökologischen Fehlschluß demonstriert worden, wonach die Verwendung von Aggregatdaten zur Ableitung individueller Beziehungen teilweise extrem irreführend sein kann. Es sind allerdings auch Modellansätze bekannt, in denen umgekehrt die Verwendung von Aggregatdaten bei der Parameterschätzung von Mikromodellen gegenüber einer Schätzung mit Hilfe von Mikrodaten überlegen ist. Abseits von diesem Mikro-Makro-Puzzle sind in der Mehrebenenanalyse in den letzten Jahren statistische Modelle und die dazugehörige Software entwickelt worden, in denen der gemeinsame Einfluß von Mikro- und Makrovariablen auf abhängige Mikrovariablen statistisch stringent formuliert werden kann. Die ersten Modelle dieser Art sind auch unter dem Namen 'Kontextmodelle' bekannt geworden. Der methodische Fortschritt gegenüber früheren Ansätzen besteht nun darin, daß nicht nur die fixen Effekte von Einflußgrößen der Makroebene modelliert werden, sondern darüber hinaus auch zufällige Makroeffekte zugelassen sind. Mit anderen Worten: Die üblichen individuellen Fehlerausdrücke der linearen Modelle als Substitut für die unsystematischen zufälligen Einflüsse ungemessener Variablen werden in einer spezifischen Weise um analoge Fehlerterme der Makroebene erweitert; man gelangt damit zu speziellen Varianzkomponentenmodellen. Der nachfolgende Artikel von Ita G. G. Kreft gibt eine Einführung in Spezifikation und Anwendung dieses Modelltyps.' (Autorenreferat)

Using hierarchically linear models to analyze multilevel data

Urheber*in: Kreft, Ita G. G.

Free access - no reuse

0
/
0

Alternative title
Der Einsatz hierarchischer linearer Modelle für die Analyse von Daten mehrerer Ebenen
Extent
Seite(n): 44-56
Language
Englisch
Notes
Status: Veröffentlichungsversion

Bibliographic citation
ZUMA Nachrichten, 15(29)

Subject
Sozialwissenschaften, Soziologie
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
statistische Analyse
Analyse
Mehrebenenanalyse
Aggregatdatenanalyse
Daten
Grundlagenforschung
Methodenentwicklung

Event
Geistige Schöpfung
(who)
Kreft, Ita G. G.
Event
Veröffentlichung
(where)
Deutschland
(when)
1991

URN
urn:nbn:de:0168-ssoar-209729
Rights
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
Last update
21.06.2024, 4:27 PM CEST

Data provider

This object is provided by:
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. If you have any questions about the object, please contact the data provider.

Object type

  • Zeitschriftenartikel

Associated

  • Kreft, Ita G. G.

Time of origin

  • 1991

Other Objects (12)