Arbeitspapier

An evaluation of early warning models for systemic banking crises: Does machine learning improve predictions?

This paper compares the out-of-sample predictive performance of different early warning models for systemic banking crises using a sample of advanced economies covering the past 45 years. We compare a benchmark logit approach to several machine learning approaches recently proposed in the literature. We find that while machine learning methods often attain a very high in-sample fit, they are outperformed by the logit approach in recursive out-of-sample evaluations. This result is robust to the choice of performance measure, crisis definition, preference parameter, and sample length, as well as to using different sets of variables and data transformations. Thus, our paper suggests that further enhancements to machine learning early warning models are needed before they are able to offer a substantial value-added for predicting systemic banking crises. Conventional logit models appear to use the available information already fairly effciently, and would for instance have been able to predict the 2007/2008 financial crisis out-of-sample for many countries. In line with economic intuition, these models identify credit expansions, asset price booms and external imbalances as key predictors of systemic banking crises.

Sprache
Englisch

Erschienen in
Series: IWH Discussion Papers ; No. 2/2019

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
Forecasting Models; Simulation Methods
Financial Crises
Thema
early warning system
logit
machine learning
systemic banking crises

Ereignis
Geistige Schöpfung
(wer)
Beutel, Johannes
List, Sophia
von Schweinitz, Gregor
Ereignis
Veröffentlichung
(wer)
Leibniz-Institut für Wirtschaftsforschung Halle (IWH)
(wo)
Halle (Saale)
(wann)
2019

Handle
URN
urn:nbn:de:gbv:3:2-102004
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Beutel, Johannes
  • List, Sophia
  • von Schweinitz, Gregor
  • Leibniz-Institut für Wirtschaftsforschung Halle (IWH)

Entstanden

  • 2019

Ähnliche Objekte (12)