Arbeitspapier

An evaluation of early warning models for systemic banking crises: Does machine learning improve predictions?

This paper compares the out-of-sample predictive performance of different early warning models for systemic banking crises using a sample of advanced economies covering the past 45 years. We compare a benchmark logit approach to several machine learning approaches recently proposed in the literature. We find that while machine learning methods often attain a very high in-sample fit, they are outperformed by the logit approach in recursive out-of-sample evaluations. This result is robust to the choice of performance measure, crisis definition, preference parameter, and sample length, as well as to using different sets of variables and data transformations. Thus, our paper suggests that further enhancements to machine learning early warning models are needed before they are able to offer a substantial value-added for predicting systemic banking crises. Conventional logit models appear to use the available information already fairly effciently, and would for instance have been able to predict the 2007/2008 financial crisis out-of-sample for many countries. In line with economic intuition, these models identify credit expansions, asset price booms and external imbalances as key predictors of systemic banking crises.

Language
Englisch

Bibliographic citation
Series: IWH Discussion Papers ; No. 2/2019

Classification
Wirtschaft
Multiple or Simultaneous Equation Models: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
Forecasting Models; Simulation Methods
Financial Crises
Subject
early warning system
logit
machine learning
systemic banking crises

Event
Geistige Schöpfung
(who)
Beutel, Johannes
List, Sophia
von Schweinitz, Gregor
Event
Veröffentlichung
(who)
Leibniz-Institut für Wirtschaftsforschung Halle (IWH)
(where)
Halle (Saale)
(when)
2019

Handle
URN
urn:nbn:de:gbv:3:2-102004
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Beutel, Johannes
  • List, Sophia
  • von Schweinitz, Gregor
  • Leibniz-Institut für Wirtschaftsforschung Halle (IWH)

Time of origin

  • 2019

Other Objects (12)