Artikel
Estimating endogenous treatment effects using latent factor models with and without instrumental variables
We provide evidence on the least biased ways to identify causal effects in situations where there are multiple outcomes that all depend on the same endogenous regressor and a reasonable but potentially contaminated instrumental variable that is available. Simulations provide suggestive evidence on the complementarity of instrumental variable (IV) and latent factor methods and how this complementarity depends on the number of outcome variables and the degree of contamination in the IV. We apply the causal inference methods to assess the impact of mental illness on work absenteeism and disability, using the National Comorbidity Survey Replication.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 9 ; Year: 2021 ; Issue: 1 ; Pages: 1-25 ; Basel: MDPI
- Classification
-
Wirtschaft
Health Behavior
Labor Force and Employment, Size, and Structure
- Subject
-
disability
instrumental variable
latent factor models
mental illness
treatment effect
- Event
-
Geistige Schöpfung
- (who)
-
Banerjee, Souvik
Basu, Anirban
- Event
-
Veröffentlichung
- (who)
-
MDPI
- (where)
-
Basel
- (when)
-
2021
- DOI
-
doi:10.3390/econometrics9010014
- Handle
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Banerjee, Souvik
- Basu, Anirban
- MDPI
Time of origin
- 2021