Artikel

Estimating endogenous treatment effects using latent factor models with and without instrumental variables

We provide evidence on the least biased ways to identify causal effects in situations where there are multiple outcomes that all depend on the same endogenous regressor and a reasonable but potentially contaminated instrumental variable that is available. Simulations provide suggestive evidence on the complementarity of instrumental variable (IV) and latent factor methods and how this complementarity depends on the number of outcome variables and the degree of contamination in the IV. We apply the causal inference methods to assess the impact of mental illness on work absenteeism and disability, using the National Comorbidity Survey Replication.

Language
Englisch

Bibliographic citation
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 9 ; Year: 2021 ; Issue: 1 ; Pages: 1-25 ; Basel: MDPI

Classification
Wirtschaft
Health Behavior
Labor Force and Employment, Size, and Structure
Subject
disability
instrumental variable
latent factor models
mental illness
treatment effect

Event
Geistige Schöpfung
(who)
Banerjee, Souvik
Basu, Anirban
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2021

DOI
doi:10.3390/econometrics9010014
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Banerjee, Souvik
  • Basu, Anirban
  • MDPI

Time of origin

  • 2021

Other Objects (12)