The fixation time of a strongly beneficial allele in a structured population
Abstract: For a beneficial allele which enters a large unstructured population and eventually goes to fixation, it is known that the time to fixation is approximately 2log(α)/α for a large selection coefficient α. For a population that is distributed over finitely many colonies, with migration between these colonies, we detect various regimes of the migration rate μ for which the fixation times have different asymptotics as α→∞.
If μ is of order α, the allele fixes (as in the spatially unstructured case) in time ∼2log(α)/α. If μ is of order αγ,0≤γ≤1, the fixation time is ∼(2+(1−γ)Δ)log(α)/α, where Δ is the number of migration steps that are needed to reach all other colonies starting from the colony where the beneficial allele appeared. If μ=1/log(α), the fixation time is ∼(2+S)log(α)/α, where S is a random time in a simple epidemic model.
The main idea for our analysis is to combine a new moment dual for the process conditioned to fixation with the time reversal in equilibrium of a spatial version of Neuhauser and Krone’s ancestral selection graph
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Electronic journal of probability. - 21 (2016) , 1-42, ISSN: 1083-6489
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2021
- Urheber
- Beteiligte Personen und Organisationen
-
Abteilung für Mathematische Stochastik, Prof. Dr. Peter Pfaffelhuber
- DOI
-
10.1214/16-EJP3355
- URN
-
urn:nbn:de:bsz:25-freidok-2217648
- Rechteinformation
-
Kein Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
25.03.2025, 13:44 MEZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Greven, Andreas
- Pfaffelhuber, Peter
- Pokalyuk, Cornelia
- Wakolbinger, Anton
- Abteilung für Mathematische Stochastik, Prof. Dr. Peter Pfaffelhuber
- Universität
Entstanden
- 2021