Curvature varifolds with orthogonal boundary
Abstract: We consider the class
of -dimensional surfaces in
that intersect orthogonally along the boundary. A piece of an affine -plane in
is called an orthogonal slice. We prove estimates for the area by the integral of the second fundamental form in three cases: first, when admits no orthogonal slices, second for if all orthogonal slices are topological disks, and finally, for all if the surfaces are confined to a neighborhood of . The orthogonality constraint has a weak formulation for curvature varifolds. We classify those varifolds of vanishing curvature. As an application, we prove for any the existence of an orthogonal 2-varifold that minimizes the curvature in the integer rectifiable class
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Journal of the London Mathematical Society. - 110, 3 (2024) , e12976, ISSN: 1469-7750
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2024
- Urheber
- DOI
-
10.1112/jlms.12976
- URN
-
urn:nbn:de:bsz:25-freidok-2569309
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
25.03.2025, 13:48 MEZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Kuwert, Ernst
- Müller, Marius
- Universität
Entstanden
- 2024