Arbeitspapier

Improving inference and forecasting in VAR models using cross-sectional information

We propose a prior for VAR models that exploits the panel structure of macroeconomic time series while also providing shrinkage towards zero to address overfitting concerns. The prior is flexible as it detects shared dynamics of individual variables across endogenously determined groups of countries. We demonstrate the usefulness of our approach via a Monte Carlo study and use our model to capture the hidden homo- and heterogeneities of the euro area member states. Combining pairwise pooling with zero shrinkage delivers sharper parameter inference that improves point and density forecasts over only zero shrinkage or only pooling specifications, and helps with structural analysis by lowering the estimation uncertainty.

ISBN
978-3-96973-124-6
Language
Englisch

Bibliographic citation
Series: Ruhr Economic Papers ; No. 960

Classification
Wirtschaft
Bayesian Analysis: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Forecasting Models; Simulation Methods
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Subject
BVAR
shrinkage
forecasting
structural analysis

Event
Geistige Schöpfung
(who)
Prüser, Jan
Blagov, Boris
Event
Veröffentlichung
(who)
RWI - Leibniz-Institut für Wirtschaftsforschung
(where)
Essen
(when)
2022

DOI
doi:10.4419/96973124
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Prüser, Jan
  • Blagov, Boris
  • RWI - Leibniz-Institut für Wirtschaftsforschung

Time of origin

  • 2022

Other Objects (12)