Arbeitspapier

Open source cross-sectional asset pricing

We provide data and code that successfully reproduces nearly all crosssectional stock return predictors. Unlike most metastudies, we carefully examine the original papers to determine whether our predictability tests should produce t-stats above 1.96. For the 180 predictors that were clearly significant in the original papers, 98% of our reproductions find t-stats above 1.96. For the 30 predictors that had mixed evidence, our reproductions find t-stats of 2 on average. We include an additional 105 characteristics and 945 portfolios with alternative rebalancing frequencies to nest variables used in other metastudies. Our data covers all portfolios in Hou, Xue and Zhang (2017); 98% of the portfolios in McLean and Pontiff (2016); 90% of the characteristics from Green, Hand, and Zhang (2017); and 90% of the firm-level predictors in Harvey, Liu, and Zhu (2016) that use widelyavailable data.

Sprache
Englisch

Erschienen in
Series: CFR Working Paper ; No. 20-04

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
Chen, Andrew Y.
Zimmermann, Tom
Ereignis
Veröffentlichung
(wer)
University of Cologne, Centre for Financial Research (CFR)
(wo)
Cologne
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chen, Andrew Y.
  • Zimmermann, Tom
  • University of Cologne, Centre for Financial Research (CFR)

Entstanden

  • 2020

Ähnliche Objekte (12)