Arbeitspapier
Improving inference and forecasting in VAR models using cross-sectional information
We propose a prior for VAR models that exploits the panel structure of macroeconomic time series while also providing shrinkage towards zero to address overfitting concerns. The prior is flexible as it detects shared dynamics of individual variables across endogenously determined groups of countries. We demonstrate the usefulness of our approach via a Monte Carlo study and use our model to capture the hidden homo- and heterogeneities of the euro area member states. Combining pairwise pooling with zero shrinkage delivers sharper parameter inference that improves point and density forecasts over only zero shrinkage or only pooling specifications, and helps with structural analysis by lowering the estimation uncertainty.
- ISBN
-
978-3-96973-124-6
- Sprache
-
Englisch
- Erschienen in
-
Series: Ruhr Economic Papers ; No. 960
- Klassifikation
-
Wirtschaft
Bayesian Analysis: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Forecasting Models; Simulation Methods
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
- Thema
-
BVAR
shrinkage
forecasting
structural analysis
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Prüser, Jan
Blagov, Boris
- Ereignis
-
Veröffentlichung
- (wer)
-
RWI - Leibniz-Institut für Wirtschaftsforschung
- (wo)
-
Essen
- (wann)
-
2022
- DOI
-
doi:10.4419/96973124
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Prüser, Jan
- Blagov, Boris
- RWI - Leibniz-Institut für Wirtschaftsforschung
Entstanden
- 2022